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Different from the cases discussed preciously, nonlinear changes of refractive index in the photorefractive
materials are influenced by both the linear and quadratic electro-optic effect simultaneously now. Here
we present the evolution equations of one-dimension incoherently coupled spatial soliton families due to
two-photon effect in biased photorefractive crystals with both the linear and quadratic electro-optic effect
and discuss their existence conditions and properties in detail. Our analysis indicates that these soliton
families can exist in all three possible realizations: dark-dark, bright-bright and dark-bright provided that
the incident beams have the same polarization, wavelength and are mutually incoherent. Finally, the
stabilities of these soliton families have been discussed by means of beam propagation methods.
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Thus far, photorefractive spatial solitons based on single-
photon photorefractive effect have been investigated ex-
tensively in both theory and experiments[1−23]. In 2003,
Castro-Camus et al. presented a new model of the
two-photon photorefractive effect[24]. Screening soli-
tons, photovoltaic solitons and screening-photovoltaic
solitons resulting from only the linear electro-optic ef-
fect (Pockels effect) or quadratic electro-optic effect (dc
Kerr effect) in two-photon photorefractive materials and
their properties have been reported in the literature
already[25−28]. However, some types of two-photon pho-
torefractive materials that have large electro-optic ef-
fect, including both the linear and quadratic electro-
optic effects near the phase-transition temperature have
been found, such as ferroelectric KTaxNb1−xO3(KTN)
crystals[29,30], LiNbO3 single crystals[15,25,31] and so on.
Very recently, we have demonstrated that photorefrac-
tive spatial solitons can also be supported in biased
two-photon photorefractive crystals involving both the
linear and quadratic electro-optic effect in steady-state
regime[32]. Study on photorefractive soliton pairs and
soliton families have been gradually developed[33−35].

In this letter, we present the evolution equations of
the one-dimension incoherently coupled spatial soliton
families in biased two-photon photorefractive materials
with both the linear and quadratic electro-optic effect.
In steady state our results predict that incoherently cou-
pled dark-dark, bright-bright and dark-bright hybrid soli-
ton families can be supported under appropriate condi-
tions provided that the incident beams have the same
polarization, the same wavelength and are mutually in-
coherent. These soliton families owe their existence to
both the linear term and quadratic electro-optic term in
the meantime in our analysis. The characteristics and
properties of these soliton families will be discussed in
detail. Finally, the stabilities of such solitons have been
discussed by means of beam propagation methods.

Through beam splitter a optical beam is split into
some sub-beams, some optical devices can be used to

change the optical paths between the beam splitter and
the two-photon crystal to guarantee that optical path dif-
ferences of the sub-beams are greater than the coherence
length, so mutually incoherent optical beams with the
same wavelength and the polarization can be obtained.
Let us consider N such optical beams with the same
wavelength and the polarization but are mutually inco-
herent, propagate along z axis in biased two- photon pho-
torefractive crystal with both the linear and quadratic
electro-optic effect. We assume that the optical c axis
of two-photon photorefractive crystal is oriented along
the x, y and z coordinate of the system and is illumi-
nated by the gating beam whose intensity can be consid-
ered to remain constant during propagation. The inci-
dent optical beams are linearly polarized along x and the
external bias electric field is applied in the same direc-
tion. Only the one-dimensional nonlinear diffraction will
be taken into account in our configuration by assuming
that the variables vary much more rapidly in the x direc-
tion. In the steady-state regime, the envelopes Ui of the
N beams then satisfy the following dynamical evolution
equations[32]:

Fig. 1. Intensity profile of soliton components of dark soliton
family with four components for E0 = −3 × 103 V/m.
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where α1=(k0x0)2n4
er33E0/2, α2=(k0x0)2n4

egeffε2
0(εr−1)2

E2
0/2, σ = γ1NA/s2I2d, ρ = I2∞/I2d. Here k = k0ne =

(2π/λ0)ne with ne being the unperturbed index of re-
fraction and λ0 the free-space wavelength. r33 and geff

are the effective linear and quadratic electro-optic coeffi-
cient, respectively. ε0 and εr are the vacuum and relative
dielectric constants, respectively. I2d = β2/s2 is dark
irradiance with β2 being the thermoionization probabil-
ity constant for the transitions between the conduction
band and intermediate allowed level. s2 is photoexcita-
tion cross section of the soliton beam, γ1 is the recom-
bination factor of the intermediate allowed level valence

band. I2 = I2d

N∑
i=1

|Ui (x, z)|2 is the total intensity of

the N incident beams. I2∞ = I2 (x → ±∞, z) and E0

represent the total intensity and the value of the space
charge field at x → ±∞, respectively. x0 is an arbitrary
spatial width for scale. For simplicity, any loss effects
have been neglected.

To obtain the dark soliton family, the normalized en-
velopes Uiis expressed as Ui(s, ξ)=ρ1/2C

1/2
i y(s) exp(iνξ),

where ν represents a nonlinear shift of the propagation
constant. y (s) is a normalized odd function bounded be-
tween 0 � |y (s)| � 1, and satisfies y (0) = 0, y (s → ±∞)
= ±1 and when s → ±∞, all the derivatives of y (s) are
zeros. Ci is defined as Ci = I2i max/I2 max and satisfies
N∑

i=1

Ci = 1. Substituting these Ui into Eq. (1) yields
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By means of y-boundary condition, y(s) and ν can be
expressed as
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ν = −α1 − α2. (4)

Through numerical analysis we can get that dark soli-
ton family due to two-photon effect is possible only when
α1 < −2α

[32]
2 . In other words, such dark soliton fami-

lies own their existence to both the linear and quadratic
electro-optic term in the meantime. Then dark soliton
family components can be obtained through Ui(s, ξ) =
ρ1/2C

1/2
i y(s) exp(iνξ).

To illustrate our results, we consider the follow exam-
ple: let λ0 = 532 nm, x0 = 40 μm, ρ = 10, E0 = −3 ×
103V/m. The crystal parameters are taken to be ne =
2.2, r33 = 30×10−12 m/V, geff = 0.17m4/C2, εr = 10000,
σ = 104[15, 25, 31]. Figure 1 shows the normalized inten-
sity profiles of the dark soliton family with four compo-
nents (C1 = 0.40, C2 = 0.3, C3 = 0.20, C4 = 0.10).
The FWHM of these family components is found to be
167.82 μm.

The bright spatial soliton family can be analyzed in
a similar way. In this case, the optical beam intensity is
expected to vanish at infinity (s → ±∞), and thus ρ =
I2∞/I2d = 0. We express Ui as Ui (s, ξ) = r1/2C

1/2
i y (s)

exp (iνξ), where r = I2 max/I2d = I2 (0)/I2d and y (s) is a
normalized real function bounded between 0 � y (s) � 1.
For the bright spatial soliton family, we require that
y (0) = 1, ẏ (0) = 0, y (s → ±∞) = 0. The parameters
Ci, ν are as the same as the dark soliton family. Sub-
stituting this expression of Ui into Eq. (1), we readily
get

Fig. 2. Intensity profile of soliton components of bright soli-
ton family with three components for (a)E0 = 1 × 105V/m
and (b) E0 = −1 × 105V /m.
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By integrating Eq. (5) twice yields
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Through numerical calculation we can conclude that
Eq. (6) can support bright solitons only when α1 >
−α2/6[32]. It is easy to see that the sign of α1and α2also
can be different by altering the polarity of the exter-
nal bias electric field as long as α1 > −α2/6, which
is quite different from the cases presented previously.
The bright soliton components can be obtained through
Ui(s, ξ) = r1/2C

1/2
i y(s) exp(iνξ).

Figure 2 depicts the normalized intensity profiles of
bright soliton family with three components (C1 = 0.60,
C2 = 0.25, C3 = 0.15) for E0 = 1 × 105, −1 × 105 V/m,
r = 10. The FWHM of these bright soliton components
are found to be 18.22, 24.72 μm, respectively. From Fig.
2, it is found that the width of these family components
for E0 = −1 × 105 V/m (α1 < 0, α2 > 0) is also different
from that of E0 = 1 × 105 V/m (α1 > 0, α2 > 0). In
other words, in the case of the external biased field with
equal in magnitude but opposite in polarity the photore-
fractive effect is weakened even counteracted by the in-
teraction between the linear and quadratic electric-optic
effect. So the width of these family components can also
be adjusted by altering the polarity besides changing the
strength of the external biased field.

Let us consider M bright and N dark beams that pro-
pagate collinearly in such photorefractive crystals. The
total intensity of M+N mutually incoherent optical beams

can be written as I2=I2d(
M∑
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N∑
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where U1, U2,· · · , UMand V1, V2,· · · , VN are the normal-
ization envelopes of the M bright and N dark beams,
respectively, and satisfy the following dynamical evolu-
tion equations:
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Here, p ∈ (1, 2, · · · , M) and q ∈ (1, 2, · · · , N).
To obtain the dark-bright hybrid soliton family solu-

tions of Eq. (8), the normalized envelopes Ui and Vj

are expressed as Ui (s, ξ) = r1/2C
1/2
i f (s) exp (iμξ) and

Vj (s, ξ) = ρ1/2D
1/2
j g (s) exp (iνξ), where

M∑
i=1

Ci = 1,

N∑
j=1

Dj = 1. r and ρ are the radio of the peak value of the

total intensity of M bright and N dark optical beams to
the dark-irradiance I2d, respectively. f (s) corresponds
to a bright envelope bounded between 0 � y (s) � 1 and
satisfies that f (0) = 1, ḟ (0) = 0, f (s → ±∞) = 0; g (s)
denotes a dark normalized field profile also bounded be-
tween 0 � |g (s)| � 1 and g (0) = 0, g (s → ±∞) = 1.
Substitution these form of Ui and Vj into Eq. (8) lead to
the following equations:
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We now look for particular solutions which also satisfy the condition f2 + g2 = 1. In this limit, Eq. (9) take the forms
of
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where the parameter δis defined as δ = (r − ρ)/(1 + ρ). From Eq. (10), the values of μand νcan be readily obtained
by employing the f − g boundary conditions and are given by
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Equation (10) can be solved approximately provided that
|δ| << 1, that is to say, the peak values of the total inten-
sity of M bright beams are approximately equal to that
of the N dark ones. In this case, μ can be approximately
rewritten as
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+α2 [σδ/(1 + ρ + σ) − 1] , (13)

and thus Eq. (10) can be reduced to
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It can be directly shown that Eq. (14) exhibit closed
form solutions of the form
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The normalized envelopes of dark-bright soliton compo-
nents can be expressed as
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Equation (15) show that these solutions are possible only
when δ (α1 + 2α2) > 0.

To illustrate our results, Fig. 3 shows the normalized
intensity profiles of the dark-bright hybrid spatial soliton
family in which the peak value of the total intensity of
the bright beams is slightly larger than that of the dark
ones. The intensity FWHM of these family components
is found to be 80.14 and 89.73 μm, respectively.

It is noteworthy to note that these incoherently cou-
pled spatial soliton families, which stem from two-photon

effect in biased photorefractive crystal with both the lin-
ear and quadratic electro-optic effect, can be simplified
to incoherently coupled spatial soliton pairs when they
contain only two components. Similarly, when the inci-
dent optical beams contain only one component, Eq. (1)
are equivalent to that of the single soliton case already
discussed previously[32]. Moreover, incoherently coupled
dark-bright hybrid soliton families can be supported in
our configuration when the peak values of the total in-
tensity of bright beams and that of the dark ones are
approximately equal.

Finally, we investigate the stabilities of these bright
and dark soliton families by means of beam propagation

Fig. 3. Intensity profile of soliton components of dark-bright
hybrid soliton family with four bright components (C1 = 0.40,
C2 = 0.3, C3 = 0.20, C4 = 0.10) and three dark components
(D1 = 0.60, D2 = 0.25, D3 = 0.15) for (a) E0 = 1 × 105 V/m
and (b) E0 = −1 × 105 V/m for δ = 0.01.

Fig. 4. (a) Stable propagation of the bright soliton family
with three components for r = 10 and E0 = 1× 105 V/m; (b)
Approximate stable propagation of the dark soliton family in
a relative short distance and (c) unstable propagation of the
dark soliton family during the longer propagation with four
components for E0 = −1 × 105 V/m, ρ = 4.
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methods. The solitary wave solutions obtained from
Eqs. (3) and (6) are used as the input beam profiles and
solve Eq. (1) numerically. As expected, our results con-
firm that the bright soliton family can remain invariant
during propagation process, which is shown in Fig. 4(a).
Thus, bright soliton family resulting from both the linear
and quadratic electric-optic effect is stable with distance.
The propagation of the dark soliton family is depicted
in Figs. 4(b) and 4(c). It is shown that the input beams
will diffract during the longer propagation process (>8
mm), which can be mainly attributed to the truncation
in the process of numerical calculation. However, the
propagation of dark soliton family can be regarded as an
approximate stable process in comparatively short dis-
tance (∼5 mm) in the propagation direction. Moreover,
after a simple analysis we can get that dark-bright hybrid
soliton family is also approximate stable in comparatively
short distance (∼5 mm) in the propagation direction and
will be unstable during the longer propagation process
(>8 mm) because of the dark soliton components in the
hybrid soliton family.

In conclusion, we have presented theoretically the evo-
lution equations of one-dimension incoherently coupled
spatial soliton families in biased two-photon photorefrac-
tive material including both the linear and quadratic
electro-optic effects. Under strong external bias con-
ditions, our analysis indicates that dark-dark, bright-
bright and dark-bright hybrid incoherently coupled soli-
ton families can exist in the steady-state regime. It has
been shown that bright soliton family is possible only
when α1 > −α2/6, whereas the dark branch requires
α1 < −2α2, and dark-bright hybrid soliton family is
possible only when δ (α1 + 2α2) > 0 is satisfied. Dis-
tinguished from the studies in the past, these incoher-
ently coupled soliton families own their existence to both
the linear term and quadratic electro-optic term in the
meantime in our analysis. PR effect can be enhanced
or weakened even counteracted by the interaction be-
tween the linear and quadratic electric-optic effect, so
existence conditions of these spatial soliton families are
more complex for a given two-photon PR crystal. For
example, bright spatial soliton family can exist when
α1 < 0, α2 > 0 so long as α1 > −α2/6 is satisfied, which
is quite different from the cases discussed previously. Fi-
nally, the stabilities of such solitons have been discussed
by means of beam propagation methods. It is found that
bright spatial soliton family is stable, whereas those dark
soliton family and dark-bright hybrid soliton family can
be regarded as an approximate stable in comparatively
short distance (∼5 mm) in the propagation direction
whereas the input beams will diffract and unstable dur-
ing the longer propagation process(>8 mm).
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